题目:Ordering graphs by their largest (least) A_alpha eigenvalues
主讲人:盐城师范学院 郭曙光 教授
时间:2021年12月26日(周日) 8:30~9:15
腾讯会议:871 251 058(会议密码:654321)
摘要:
Let G be a simple undirected graph. For real number alpha in [0,1]. Nikiforov defined the A_{alpha} matrix of G as A_{alpha}(G)=alpha D(G)+(1-alpha)A(G), where A(G) and D(G) are the adjacency matrix and the degree diagonal matrix of $G$ respectively.
In this talk, we present a sharp upper bound on the largest eigenvalue \rho_{alpha}(G) of A_{alpha}(G) for alpha in [1/2, 1). Employing this upper bound, we prove that: For connected G1 and G2 with n vertices and m edges, if the maximum degree $\Delta(G1)>2alpha(1-alpha)(2mn+1)+2 alpha and Delta(G1)>Delta(G2), then \rho_{alpha}(G1)>\rho_\alpha(G2)$.
Let lambda_{alpha}(G) denote the least eigenvalue of A_{alpha}(G). For alpha in (1/2, 1), we prove that: For two connected G1 and G2, if the minimum degree delta(G1)<\frac{1}{1-\alpha}-2 and delta(G1)<delta(G2), then lambda_{alpha}( G1)<lambda_{alpha}( G2).
个人简介: 郭曙光,男,博士,江苏省盐城师范学院教授,主要从事代数图论和组合数论的研究,曾被评为江苏省高校“青蓝工程”中青年学术带头人和江苏省“333工程”培养对象,先后主持国家自然科学基金面上项目2项,江苏省自然科学基金面上项目2项,在《J. Number Theory》《Linear Algebra Appl.》《Discrete Math.》等重要学术刊物上发表论文50余篇,出版江苏省高等学校重点教材1部,获江苏省教育科学研究成果二等奖1项。
欢迎广大师生参加! 联系人:龚世才,孙少伟