一、报告题目:A class of optimal transportation problems on the sphere
二、报告人:李奇睿 教授
三、时 间:2024年6月10日(周一) 下午 15:00-16:00
四、地 点:闻理园 A4-309
报告摘要:In this talk, we discuss a class of optimal transport problems on the sphere, with cost function $c(x,y)=F(d(x,y))$, where d is the spherical distance. We allow that F is a smooth function defined only in a subinterval of $[0,\pi]$, while c takes $-\infty$ at where F is not defined. Under suitable conditions, we show there is an optimal map solving the problem. In particular, if $F(d)=\log (\kappa \cos d -1)$ with $\kappa>1$, or $F(d)=\log\cos d$, then the associated optimal transport problem is respectively equivalent to the refractor problem in reshaping light beams, or the Aleksandrov problem for hypersurfaces with prescribed curvature.
报告人简介:李奇睿,浙江大学数学科学学院研究员,博士生导师。研究方向是完全非线性方程与几何分析。近年来与合作者在Monge最优运输问题,预定曲率问题,几何流等方向取得丰富成果,已在 J. Eur. Math. Soc., J. Differential Geom.,Adv. Math.,J. Funct. Anal.,Trans. Amer. Math. Soc.等国际著名期刊上发表论文近30篇。
欢迎广大师生参加! 联系人:李爱军