一、 题目: (1)Boundedness of Monge-Ampere singular integral operators acting on Hardy spaces and their duals
(2)A_{p, E} weights, maximal operators, and Hardy spaces associated with a family of general sets
二、主讲人:林钦诚
三、时 间:2017年6月19日,下午:15:10—16:10
2017年6月20日,下午:14:30--15:30
四、地 点:闻理园A4-216室
报告摘要:
(1) We study the Hardy spaces H^p_F associated with a family F of sec- tions which is closely related to the Monge-Ampere equation. We characterize the dual spaces of H^p_F , which can be realized as Carleson measure spaces, Campanato spaces, and Lipschitz spaces. Also the equivalence between the characterization of the Littlewood-Paley g-function and atomic decomposition for H^p_F is obtained. Then we prove that Monge-Amp`ere singular operators are bounded from H^p_F into Lpμ and bounded on both H^p_F and their dual spaces.
(2)我们考虑由一般集合族E所衍生的 A_p 权理论、极大算子、Hardy空间、及其对偶BMO空间,然后证明Hardy空间的极大函数刻画。
报告人简介:
林钦诚,台湾中央大学特聘教授,美国乔治亚大学博士。曾任中央大学数学系主任、数学与理论中心主任、理学院副院長。已发表70余篇高水平专业论文,分別刊登于Adv. in Math., Math. Ann., Trans. AMS, J. Funct. Anal.等期刊。