题 目:Exotic Calder\'on--Zygmund operators
主讲人:天津大学李康伟研究员
时 间:2021年12月11日(周六),上午10:00-10:50
地 点:腾讯会议ID:788 874 160
会议列表:https://meeting.tencent.com/dm/ZTpBtTecaDL2
报告摘要:In this talk, I will introduce a class of singular integral operators with kernels that are more singular than standard Calder\'on--Zygmund kernels, but less singular than bi-parameter product Calder\'on--Zygmund kernels. These kernels arise as restrictions to two dimensions of certain three-dimensional kernels adapted to so-called Zygmund dilations, which is part of our motivation for studying these objects. We show that such kernels can, in many ways, be seen as part of the extended realm of standard kernels by proving that they satisfy both a $T1$ theorem and commutator estimates in a form reminiscent of the corresponding results for standard Calder\'on--Zygmund kernels.
报告人简介:李康伟,研究员。本科毕业于南开大学陈省身数学试点班,2015年6月于南开大学获博士学位。2015年8月-2019年8月先后在芬兰赫尔辛基大学、西班牙巴斯克应用数学中心从事博士后研究。2019年12月至今在天津大学工作。研究方向为调和分析,主要包括小波分析、奇异积分算子理论及其加权理论。解决了多线性权的外推定理这一长达10年的公开问题,解决了Cruz-Uribe, Martell, Perez 2005年在IMRN上提出的极大函数算子的混合弱型估计的猜想,建立了一般的多线性多参数奇异积分算子理论。已在 J. Math. Pures. Appl., Adv. Math., Math. Ann., IMRN, Trans. AMS, J. Funct. Anal. 等期刊发表论文40余篇。
欢迎广大师生参加,联系人:房启全。